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After a failure or attack the structure of a complex network changes due to node removal. Here, we show
that the degree distribution of the distorted network, under any node disturbances, can be easily computed
through a simple formula. Based on this expression, we derive a general condition for the stability of noncor-
related finite complex networks under any arbitrary attack. We apply this formalism to derive an expression for
the percolation threshold fc under a general attack of the form fk�k�, where fk stands for the probability of a
node of degree k of being removed during the attack. We show that fc of a finite network of size N exhibits an
additive correction which scales as N−1 with respect to the classical result for infinite networks.
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INTRODUCTION

The stability of graphs against various disrupting events is
a central issue in the study of complex networks �1–10�. If
information is transported across a network, as is the case of
epidemics across social networks or information broadcast
through the Internet, the “damage� of some nodes can dra-
matically affect the dynamics of the system. In the context of
disease spreading, this could lead to an epidemic extinction,
while in communications to a halt of information broadcast
�11–15�. Both the topological structure of the network and
the nature of the attack determine the resulting effect �16�.
For example, it has been shown that scale-free �SF� networks
display a high degree of tolerance against random failures
�9�, while, on the other hand, they are quite sensitive to in-
tentional attacks �10�. Clearly, there are various strategies to
perform an intentional attack, and each one of them requires
a different level of knowledge on the network topology
�16–18�. A rather general attack, proposed in �19,20� and
which we will use in this paper, takes the form fk�k�, where
fk denotes the probability of a node of degree k of being
removed during the attack, while � is associated with the
degree of knowledge of the attacker. The analysis of this
attack has revealed that in SF networks an increase of � leads
to a decrease of the critical fraction of nodes that must be
removed to disintegrate the network—i.e., a decrease in the
percolation threshold fc �19,20�.

Though many results have been derived for infinite net-
works, very little is known about the stability of finite net-
works. Typical examples of small-size finite networks are ad
hoc networks of commercial mobile devices, frequently used
for communication �21�, temporary peer-to-peer networks
formed by BitTorrent clients for efficient download of files
�22�, and networks of autonomous mobile robots �23�. The
operation of these systems relies on the robustness of the
highly dynamical underlying network. Thus, a good under-
standing of the stability of these small-size networks is im-
perative for these applications. Moreover, we can say that in

general a comprehensive theory for the stability of arbitrary
finite networks under any node disturbance is still lacking.

In this paper we attempt to shed some light on this matter
by proposing an alternative derivation for the percolation
threshold �24�. In our approach, instead of applying a gener-
ating function formalism to find an analytic expression for
the percolation threshold as in �1,2,17�, we used the fact that
during an attack the degree distribution of the network
changes �see Fig. 1�. We show that the degree distribution of
the distorted �uncorrelated� network, under any node distur-
bances, can be easily computed through a simple formula.
Based on this expression, we derive a general condition for
the stability of noncorrelated complex networks under any
arbitrary attack. This condition applied to the study of net-
work stability under the general attack proposed in �19,20�
leads us to a general expression for the percolation threshold
fc. We show that fc of a finite network of size N exhibits an
additive correction which scales as N−1 with respect to the
classical result for infinite networks �1,9,10�. Simulation re-
sults confirm all these findings.

NETWORK TOPOLOGY AFTER DISTURBANCE

A failure or attack can be thought of in the following way.
Let pk be the degree distribution of the network before the
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FIG. 1. The scheme illustrates an attack as consisting of two
steps: �a� selection of nodes to be removed �see set R� and �b�
cutting of the edges that run from the surviving nodes �represented
by set S� to the set of removed nodes. As the scheme shows, the
attack affects also the degree of the surviving nodes.
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attack. The first step in the attack is to select the nodes that
are going to be removed. Let us assume that this is per-
formed by means of fk, where fk represents the probability
for a node of degree k of being removed from the network.
Note that the only restriction on fk is 0� fk�1. After the
node selection, we divide the network into two subsets, one
subset contains the surviving nodes �S� while the other sub-
set comprises the nodes that are going to be removed �R�.
Figure 1 illustrates this procedure. At the moment the nodes
in R are actually removed, the degree distribution of the S
nodes is changed due to the removal of the E edges that run
between these two subsets. The probability � of finding an
edge in subset S that is connected to a node in subset R is
expressed as

� =
�i=0

� ipif i

��k=0
� kpk� − 1/N

. �1�

The reasoning behind this expression is as follows. The total
number of half-edges in the surviving subset, including the E
links that are going to be removed, is � j=0

� j�Npj��1− f j�. The
probability for a randomly chosen half-edge of being re-
moved is simply �i=0

� i�Npi�f i / ��k=0
� k�Npk�−1�. E is the num-

ber of half-edges in S times this probability, and � is ob-
tained by dividing E by the number of half-edges in the
subset S. Notice that the removal of nodes can only lead to a
decrease of the degree of a node. Finally, to calculate the
degree distribution pk� after the attack, we still need to esti-
mate the probability pq

s of finding a nodes with degree q in
the surviving subset S �before cutting the E edges�. This
fraction takes the simple form

pq
s =

�1 − fq�pq

1 − �i=0
� pif i

. �2�

Now we are in condition to compute pk�. Using Eqs. �1� and
�2�, we obtain the following expression for pk�:

pk� = �
q=k

� �q

k
��q−k�1 − ��kpq

s . �3�

Equation �3� can be iteratively evaluated by replacing pk
with pk� into Eqs. �1�–�3�. It is instructive to notice that for
failure—i.e., fk= f—and assuming N�1, Eq. �1� reduces to
�= f , while Eq. �2� becomes pq

s = pq. In consequence, from
Eq. �3� we retrieve the degree distribution pk� after failure
which reads �9� pk�=�q=k

� � q
k �fq−k�1− f�kpq. A similar expres-

sion has also been used to described pk� after an ad hoc attack
in SF networks with N�1 �10�.

Figure 2 shows a comparison between stochastic simula-
tions �symbols� and Eq. �3� �solid line� for two different
network topologies: namely, �a� Erdős-Rényi �ER� graphs
and �b� SF networks �b�.1 Removal of nodes �and edges� was

performed through an attack of the form fk�k�, with �=1.
In the figure two different system sizes are shown: N=105

and N=50 �figure insets�.

CRITICAL CONDITION FOR FINITE NETWORKS

The following expression tells us whether an infinite net-
work percolates after an attack �9�:

�� =
	k2
�
	k
�

� 2, �4�

where 	k
� and 	k2
� refer to the first and second moments of
the degree distribution after the attack. We borrow the criti-
cal condition for infinite networks given by Eq. �4� to define
a “percolation” criterion for finite networks. Thus, by defini-
tion we assume that the condition ��=2 determines the point
at which the network breaks down �19,20�. To compute 	k
�
and 	k2
�, we utilize the generating function

1The cutoff degree kM was calculated according to Npk�1, where
k�kM and pk is an initial power-law distribution which is later
normalized in the interval �1, kM�. The assignment of edges was
performed using the matching algorithm and switching method.
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FIG. 2. Degree distribution before �circles� and after �stars� the
attack. In �a� the network topology corresponds to Erdős-Rényi
graphs, with 	k
=5, while in �b� to SF networks, pk�k−�, with �
=2.5.1 Symbols correspond to simulations, solid lines to the theo-
retical pk�, given by Eq. �3�, and dashed curves to the �theoretical�
initial pk. In �a� and �b� the main figure corresponds to networks
with N=105 nodes, while the inset shows the result for small net-
works with just N=50 nodes.
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G0�x� = �
k=0

�

�
q=k

� �q

k
��q−k�1 − ��kpq

sxk. �5�

After exchanging the order of the sum, the binomial theorem
can be applied, and we obtain

G0�x� = �
k=0

�

pq
s��x − 1��1 − �� + 1�q. �6�

From Eq. �6�, the first two moments can be easily computed
as 	k
�=dG0�1� /dx and 	k2
�=d2G0�1� /dx2+dG0�1� /dx. Af-
ter some algebra we obtain that the critical condition given
by Eq. �4� takes the form

��
k

pk�1 − fk�k���
k

pk�1 − fk�k2 + �
k

pk�fk − 2�k�
+

1

N��
k

pk�1 − fk��2 − k�k� = 0. �7�

Equation �7� determines the stability condition �according to
the given definition� for any uncorrelated network of finite
size under any arbitrary attack. In the limit of N→�, Eq. �7�
reduces to

�
k=0

�

pkk�k�1 − fk� + fk − 2� = 0. �8�

Interestingly, Eq. �8� can be also derived through a more
classical generating function formalism �25�.

GENERAL EXPRESSION FOR THE PERCOLATION
THRESHOLD

In the following, we model various dynamics �attacks�
through a generalized equation of the form: fk=Ck�, where �
is a real number signifying the amount of network structure
information available to the attacker to breakdown the net-
work �20� and C is a constant that we refer to as attack
intensity. Clearly, ��0 represents a situation in which high-
degree nodes are removed with higher probability, while �
	0 models the opposite. The last case is suitable to situa-
tions in which low-degree nodes are more prone to fail. We
are interested in knowing, for a given �, the critical fraction
fc of nodes that is required to remove through such an attack
in order to destroy the network—i.e., the percolation thresh-
old. Thus, the problem reduces to compute, for a given �, the
critical attack intensity C*. Replacing in Eq. �7� the above
definition of fk and after some algebra we obtain

C* =
1

2q	k�+1

„�2	k
q − Q − �1/N��q + 	k�+1
��

− �Q2 + �1/N��2Q + �q + 	k�+1
�2� − 4qp	k�+1
�1/2
… ,

�9�

where p= 	k2
−2	k
, q= 	k�+1
− 	k�+2
, Q= 	k�+1
p+ 	k
q, and
	k

 is defined as 	k

=�kk


pk. Since the fraction of re-
moved nodes, f , after an attack is f =�kpkfk, the expression
for the percolation threshold fc is simply

fc = C*	k�
 . �10�

Figure 3 illustrates the behavior of fc on three SF networks
��=2, 2.5, and 3� upon changes in the attack exponent �.
The symbols correspond to stochastic simulations performed
on networks of size N=105, while the black curves refer to
Eqs. �9� and �10�. In the numerical experiments we have
computed fc following �20�: when the fraction of removed
nodes is fc, the probability F of finding the network with
���2 is 1 /2.

It is interesting to observe that for any SF network, the
minimum fraction �c of nodes that is required to be removed
to break down the network is obtained by taking the limit
�→� of Eq. �10�:

�c = lim
�→�

fc��,�� = h���
1

kM�kM − 1�
, �11�

where h��� is h���= 	k2
−2	k
 and kM is the maximum de-
gree of the original network. Notice that Eq. �11� represents
an attack performed having full knowledge of the network
topology. The asymptotic values corresponding to Eq. �11�
are shown in Fig. 3 as horizontal dashed lines. Figure 3
indicates that typically an increase of the information about
the network topology, respectively �, helps the attacker to
break down the network with the removal of a smaller num-
ber of nodes. However, information becomes redundant as
the asymptotic value �c is approached.

EFFECT OF FINITE NETWORK SIZE

To illustrate the effect of network size N upon the perco-
lation threshold fc�N�, we customize Eq. �9� for random at-
tack or failure. When �=0 and fk is independent of k, we
obtain
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FIG. 3. Percolation threshold fc under changes of the attack
exponent � for three different SF networks, pk�k−�, with �=2, 2.5,
and 3 and N=105. Symbols correspond to stochastic simulations,
while solid curves correspond to Eqs. �9� and �10�. The horizontal
dashed lines indicate the asymptotic value of fc given by Eq. �11�.
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fc�N� = fc
� +

1

N
�2 − �	k2
/	k
�

	k2
 − 	k
 � , �12�

where fc
� is the well-known percolation threshold for infinite

networks under failure �1,9�, which reads fc
�=1

− �1 / �	k2
 / 	k
−1��.
Figure 4 shows a comparison between Eq. �12� �solid

line�, fc
� �dashed line�, and stochastic simulations �symbols�

for ER networks of different sizes. Notice that Eq. �12� pre-
dicts the correct scaling of fc with N—i.e., fc�N�−Fc

��N−1.
The observed deviation between Eq. �12� and simulations
can be arguably attributed to correlations effects, which have
been ignored in the current approach.

SUMMARY

We have proposed a general procedure to calculate the
distorted degree distribution of uncorrelated finite-size net-
works under arbitrary failure and attack. Using the expres-
sion for the distorted degree distribution we have derived the
critical condition for the stability of finite-size networks. The
formalism has been further applied to derive an expression
for the percolation threshold under a general attack. Finally,
it was shown that the obtained percolation threshold predicts
an additive correction which scales as N−1 with respect to the
classical result for infinite networks, as observed in simula-
tions.

The results derived throughout this paper are valid only
for uncorrelated networks. The effect of correlations on the
percolation threshold for finite �and infinite� networks re-
mains as one of the major challenges. Further extensions of
this theory will be focused in that direction.
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